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We study numerically a prototype equation which arises generically as an envelope equa-
tion for a weakly inverted bifurcation associated to traveling waves: The complex quintic
Ginzburg–Landau equation. We show six different stable localized structures including
stationary pulses, moving pulses, stationary holes and moving holes, starting from lo-
calized initial conditions with periodic and Neumann boundary conditions.
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1. Introduction

In the last decade experimental evidence of localized structures in dissipative sys-

tems far from equilibrium has been reported. In a quasi one-dimensional system,

an annulus filled with a mixture of ethanol and water and heated from below,

localized structures of convection surrounded by non-convecting fluid has been

studied.1 More recently, the formation of clusters of localized structures via the

self-completion scenario in a quasi two-dimensional gas discharge system,2 and

the interaction of dissipative localized structures in an optical pattern-forming

system have been observed.3 Experiments on vertically vibrated granular layers

in evacuated containers reveal a variety of patterns including particle-like local-

ized excitations (oscillons).4 In chemical systems, catalytic oxidation of CO on

Pt(110) exhibits oscillatory kinetics giving rise to solitary waves,5 and experiments

on a ferrocyanide–iodate–sulfite reaction diffusion system show spot patterns that

undergo a continuous process of growth through replication and death through

overcrowding.6
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The wide range of qualitatively different localized structures cannot be under-

stood with a single mechanism. Coexistence between two stable states (not nec-

essarily homogeneous7) or excitability are common features of the dynamics of

nonequilibrium media that facilitates the formation of localized patterns.

Reaction-diffusion models have been successfully showing a rich variety of be-

haviors, such as self-replication,8,9 elastic behavior upon collision,10,11 or soliton

behavior.12 Localized solutions have been observed in monostable and bistable sys-

tems with two stable fixed points and one unstable fixed point13 or one stable fixed

point, a stable limit cycle and an unstable limit cycle.12,14,15

Localized solutions, like pulses, and their interactions have also been stud-

ied within the framework of envelope equations,16–20 and order parameters

equations.21,22 In the domain of the envelope equations, the quintic complex

Ginzburg-Landau equation is known to admit stable localized solutions like pulses

as a consequence of the coexistence between a stable limit cycle and a stable fixed

point and its non-variational nature.

The aim of this article is, on the one hand, to study numerically this equation

elucidating the selection problem: Which solution will be reached starting from

specified localized initial conditions and specified boundary conditions? And on the

other hand, to show to what extent this equation with only one non-variational

parameter (all parameters real except by one) is able to accept different classes of

localized solutions.

2. Localized Solutions in the One-Dimensional Quintic Complex

Ginzburg Landau Equation (QCGLE)

The QCGLE represents an important prototype equation, since it arises generically

as an envelope equation for a weakly inverted bifurcation associated to traveling

waves. The one-dimensional QCGLE including dissipation and dispersion can be

written as

∂tA = µA + β|A|2A + γ|A|4A + D∂xxA . (1)

The subscript x denotes partial derivative with respect to x, A(x, t) = r(x, t)eiϕ(x,t)

is a complex field, and the parameters β = βr + iβi, γ = γr + iγi, and D = Dr + iDi

are in general complex. The signs of the parameters βr > 0 and γr < 0 are chosen

in order to guarantee that the bifurcation is subcritical and saturates to quintic

order. The control parameter µ is considered real. Equation (1) admits a class of

homogeneous time-periodic solutions

A1,2 = r1,2e
i([βir

2

1,2+γir
4

1,2]t+ϕ0) , (2)

where r2
1,2 = βr ±

√

β2
r + 4|γr|µ/2|γr| and ϕ0 is an arbitrary phase. The existence

of A1,2 requires that µ ≥ −β2
r/4|γr|. However inside this range only A1 is stable

against small perturbations. It is easy to see that A0 = 0 is also a solution of Eq. (1)

but it is stable only for µ < 0. Therefore the stable solutions A0 and A1 coexist
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for −β2
r/4|γr| ≤ µ ≤ 0. Inside this coexistence range is where we are looking for

localized solutions.

It is well known that if βi = γi = Di = 0 then Eq. (1) can be written as

∂tA = −
1

2

δΦ

δA∗
, (3)

where A∗ denotes the complex conjugate of A and Φ({A, A∗}) is a real functional

Φ({A, A∗}) = −2

∫
(

µ|A|2 +
βr

2
|A|4 +

γr

3
|A|6 − Dr|∂xA|2

)

dx . (4)

One can show that Φ({A, A∗}) is a Lyapounov function for Eq. (1) since multiplying

Eq. (3) by δΦ/δA, adding the complex conjugate and integrating we obtain the

Lyapounov property

dΦ

dt
=

∫
(

∂tA
δΦ

δA
+ c.c.

)

dx = −

∫
∣

∣

∣

∣

δΦ

δA

∣

∣

∣

∣

2

dx ≤ 0 . (5)

Due to the existence of a Lyapounov functional (free energy), when βi = γi =

Di = 0, we call Eq. (1) variational quintic real Ginzburg–Landau equation. This

consequently leads to an absence of a remaining dynamics in the system once an

attractor is reached. The static case has been studied for critical phenomena near

the superfluid phase transition of Helium II and for tricritical points.23

In the general case (bi 6= 0, γi 6= 0, Di 6= 0), which arises generically in systems

outside of equilibrium in the vicinity of an inverted Hopf bifurcation, there is no

“free energy” to minimize. In this case we call Eq. (1) non-variational quintic

complex Ginzburg–Landau equation.

Thus, in general the phase diagram of solutions of Eq. (1) involves seven pa-

rameters. Scaling the amplitude A, the time t and the space x we can fix three

parameters and the problem is reduced to a 4-dimensional parameter space. Due to

the complexity of the problem we set γ and D real and β = βr + iβi. Therefore the

equation remains non-variational (due to the existence of βi) and we are looking for

localized solutions in a 2-dimensional parameter space (µ, βi). Throughout the rest

of the article we use the parameter values βr = 1.125, γr = −0.859375 and Dr = 1.

2.1. Periodic boundary conditions

We carry out a numerical analysis of Eq. (1) with periodic boundary conditions

using fourth order Runge–Kutta finite differencing, a box length L = 240 with

dx = 0.4, and a time step dt = 0.1. We are performing up to 106 iterations to check

for long transients. None of the results depends sensitively on the discretization

used.

We use two classes of initial conditions: ICP (initial conditions in phase) and

ICA (initial conditions in antiphase) (see Fig. 1). The former is obtained by using

Im A(x) = 0 and localized Re A(x) positive (or negative) and the latter by choosing

Im A(x) = 0 and Re A(x) with a positive and a negative part. We note that none
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Fig. 1. Generic localized initial conditions: In phase (ICP) shown as solid line and in antiphase
(ICA) shown as dashed line.

of the results presented below depends on the details of the shape of the initial

conditions.

We are looking for localized solutions of Eq. (1) inside the range where A = 0

and the homogeneous solution coexist. Thus the localized initial conditions must

be big enough (like Fig. 1) in order to overcome the basin of attraction of A = 0.

Fixing µ we proceed to look for stable localized solutions as a function of the

non-variational parameter βi and the class of initial conditions (ICP and ICA). For

µ = −0.06 and for ICP, the results are: In the range 0 < βi < 0.456, the system

evolves to a homogeneous solution. For 0.456 < βi < 0.487, any ICP gives rise to a

stationary 2π-hole (see Fig. 2(a)). We call this localized structure a 2π-hole because

the modulus at the deepest part is not touching zero so that there is no jump in

the phase. In the very wide range 0.487 < βi < 1.9, we obtain stationary pulses

(see Fig. 2(b)). For βi > 1.9 the system goes to zero.

For µ = −0.06 and for ICA the results are: In the range 0 < βi < 0.307,

the system evolves to a homogeneous solution. For 0.307 < βi < 0.486 any ICA

generates an instance of the first type of stationary π-hole (see Fig. 2(c)). We call

this localized solution a π-hole because the modulus reaches zero leading to a phase

jump ∆ϕ = π around the cusp. Stationary 2π-holes appear in the narrow range

0.486 < βi < 0.495. In the very narrow range 0.495 < βi < 0.496 the system evolves

to a second type of stationary π-holes (see Fig. 2(d)). Both the first and second

type of stationary π-holes have qualitatively different slopes around |A| = 0. For

0.496 < βi < 0.501, we obtain a homogeneous solution. For 0.501 < βi < 0.503,

right- or left-moving holes are generated, which are asymmetric π-holes and whose

modulus reaches zero (see Fig. 2(e)). In the range 0.503 < βi < 0.507, any ICA

evolves either to a right- or a left-moving pulse, which are asymmetric and have

fixed shape (see Fig. 2(f)). In the very wide range 0.507 < βi < 1.9, any ICA reaches

a stationary pulse. For βi > 1.9 the system goes to zero.
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Fig. 2. Values of the parameters are: µ = −0.06; βr = 1.125; γr = −0.859375; Dr = 1. Thin
continuous line represents Re A and thick line stands by the modulus of the hole |A|. (a) Stationary
2π-hole for βi = 0.480. (b) Stationary pulse for βi = 0.55. (c) First type of π-hole for βi = 0.4.
(d) Second type of stationary π-hole for βi = 0.495. (e) Left-moving π-hole for βi = 0.502.
(f) Right-moving pulse for βi = 0.505.

For negative βi we obtain qualitative similar results although the QCGLE is

not invariant under the symmetry βi → −βi.

2.2. From periodic to Neumann boundary conditions

In Fig. 2, we show the possible localized solutions in the QCGLE, with only one

non-variational parameter, starting from localized initial conditions and periodic
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boundary conditions (PBC). In this section, we address the question whether a

change in the boundary conditions (from periodic to Neumann (∂xA = 0 at x = 0,

L)) will lead to qualitative changes in the localized solutions created with PBC.

The results are the following: Starting from a stationary pulse as shown in

Fig. 2(b) the change from PBC to Neumann boundary conditions (NBC) does not

imply any modification in the pulse because asymptotically the pulse satisfies NBC.

Now we start from a stationary 2π-hole as shown in Fig. 3(a) created by PBC. After

changing from PBC to NBC, the hump in the modulus (source of traveling waves)

starts moving to the boundaries in order to satisfy NBC, but the localized part

of the hole (sink of traveling waves) remains at rest. At the end we obtain a new

stationary 2π-hole (see Fig. 3(b)). The same behavior is observed when we start

from π-holes of the first and second types, as shown in Figs. 2(c) and 2(d). Starting

from a (left or right) moving π-hole (see Fig. 3(c)) and after changing from PBC to

NBC the hole starts expanding and at the end we obtain two stationary half-pulses
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Fig. 3. Values of the parameters are: µ = −0.06; βr = 1.125; γr = −0.859375; Dr = 1. Thin
continuous line represents Re A and thick line stands by the modulus of the hole |A|. (a) Stationary
2π-hole for βi = 0.480 created by PBC and localized initial condition. (b) Stationary 2π-hole for
βi = 0.480 after changing from PBC to NBC, using the initial condition of the 2π-hole shown
in (a). (c) Right-moving π-hole for βi = 0.502 created by PBC and localized initial condition.
(d) Two stationary half-pulses after changing from PBC to NBC, using the initial condition of
the right-moving π-hole shown in (c). (e) Stationary half-pulse after changing from PBC to NBC,
using the initial condition of the left-moving pulse for βi = 0.505. (f) Stationary half-pulse after
changing from PBC to NBC using as initial condition, a right-moving pulse for βi = 0.505.
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Fig. 3 (Continued).

(see Fig. 3(d)). A (left or right) moving pulse evolves to a stationary half-pulse (see

Figs. 3(e) and 3(f)).

3. Conclusions

We studied the quintic complex Ginzburg-Landau equation numerically, with only

one non-variational parameter. We have shown that this prototype equation, with

periodic boundary conditions, admits six different stable localized structures: Sta-

tionary pulses, moving pulses, three kinds of stationary holes, and moving holes. So

far, the existence (and even coexistence) of stationary pulses, stationary 2π-holes

and π-holes of the first kind was known only for a simple reaction-diffusion model.24

We obtained two different sequences of localized solutions starting from the different

classes of localized initial conditions, namely, initial conditions in phase and initial

conditions in antiphase. Finally we addressed the question whether a change in the

boundary conditions (from periodic to Neumann) leads to qualitative changes in

the localized solutions created with periodic boundary conditions.
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