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Abstract. Given a system in the vicinity of an oscillatory subcritical bifurcation (Hopf) that presents localized structures, we 
model its dynamics with the Quintic Complex Ginzburg-Landau Equation. For pulse-type structures, we study the bifurcation 
to fronts via a quasi-analytical approach. 
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INTRODUCTION 

In the last decades the importance of studying pulse-type localized structures has been shown, because they are 
observed in different physical contexts: hydrodynamics, chemical reactions, population dynamics, plasma physics, 
granular media, etc. The presence of pulses has been discovered particularly in systems whose dynamics is oscillatory, 
like binary-fluids [1] and chemical surface reactions [2]. 

In 1988, Thual and Fauve started a line of research on pulses showing the existence of pulses by using as a model the 
Quintic Complex Ginzburg-Landau Equation (QCGLE) [3]. The QCGLE arises generically as an envelope equation 
for a weakly inverted bifurcation associated with traveling waves. This equation has a non-variational nature and 
coexistence of stable solutions. 

From that pioneer work a wide field of investigation was opened, finding new solutions for QCGLE [4-8] and in 
the creation of analytical methods that allow us understand the properties of those solutions. From an analytical point 
of view we can remark the limits of QCGLE, as the variational limit [9] or the perturbative analysis of solitons in 
the non-linear Schrodinger equation (conservative limit) [10]. Recently Descalzi et al. proposed a quasi-analytical 
approach that approximate pulses on the whole range between the above referred limits. In addition, they show that 
the appearance of pulses is related to a saddle-node bifurcation [11, 12]. 

In this paper, we focus on the pulse-front bifurcation and, in this way, it is possible characterize the existence range 
of pulses. 

QUASI-ANALYTICAL STUDY OF PULSES 

Our starting point is the QCGLE: 

dtA = iiA + p\A\2A + y\A\4A + DdxxA, (1) 

where the subscripts x and t denote partial derivatives with respect to space and time respectively. A(x, t) = r(x, t)el^x^ 
is a complex field. The control parameter \i is considered as real without losing generality. The parameters j5 = j5r + ifii, 
Y=Yr + iji and D = Dr + iDi are in general complex and contain the physical information of the problem under study. 
In order to assure that the bifurcation is subcritical and saturates the quintic order it is necessary to demand /3r > 0 and 
yr < 0. For the homogeneous case, the system shows coexistence of stable solutions in the range /3r

2/4yr < ji < 0. 
If the localized structure is stationary which means r is a function depending only on the space, then it is possible 

to make the following Ansatz [3]: 

A(x,t)=Ro(x)exp{i(Qt + Oo(x))}, (2) 
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where £1 is a unknown parameter. Replacing the Ansatz in (1) one obtain two real equations, and after a simple algebra 
results: 

fi-Ro = P-R0 + Y-R0 + 2R0X6QX + RQOQXX, 

with 

M+ 

M-

Drjl-DiQ 
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DrYr+DiJi 
~ \D\2 
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(3) 
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and |£)|2 = D̂ r + £>?. It is important to notice that if Go* is constant, one can integrate explicitly the equation (3). If one 
observe the associated numerical simulations [7, 8], becomes clear the validity of this condition on Q$x in almost the 
whole space, but around the centre of the localized structure. This numerical fact allowed Descalzi et. al to propose 
the approximation scheme introduced in [11, 12]: the space is divided in one region near the center of the pulse (core) 
and another region out of the center of the pulse (outside the core). 

+P 

^ox1 (x) 

(b) 

outside the core outside the core 
core 

FIGURE 1. Regions of approximation for a pulse. The thick line is the outside the core region. The dotted line is the core region. 
(a) Modulus of the pulse RQ. (b) Phase gradient 6QX. 

Inside the core one approximate the functions RQ(X) and OQX(X) by their first terms in Taylor expansion writing: 

RQ(X) =Rm- £x2, 00x = - a x , (6) 

where (Rm, £, a ) are unknown parameters. Rm is the maximum height of the pulse at x = 0. 
When the equations (6) are included in (3) and (4) it is obtained: £ = (/i+7?m + /3+T?^ + y+7?^)/2 and a = 

P-R^ + 7-Rm — ju_. £ and a are now expressed in terms of (Rmj£l) and of the original parameters of the equation (1). 
Outside the core, where Oox is constant (+/? for x <xc and —p for x > xc ), one can integrate explicitly equation (3). 

The solution is: 

R0(X) = 
2fr4 exp{y/ - i i+ +/?2( |x| + x 0 ) } 

( e x p { 2 v / Z M ^ T / ? ( | x | + x 0 ) } - £-)2 . 
(7) 

Vb 

where a = — 3/3+/2y+, b = — 3(—/i+ +p2)/y+ and xo is a constant that emerges from the translation symmetry of the 
QCGLE. 

£1 can be asymptotically evaluated and we obtain: £1 = (-Di(^Dr - 2p2\D\2)+2p\D\2^-iiDr +p2\D\2)/D2, that 
only depends on p (and on the parameters of (1)). Now £ and a depends on (Rm,p). 
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Next step in the Matching Approach is to impose continuity to the functions atxc = —pi a. The continuity in RQ(X) 
fixes the value of xo in terms of Rm and p: 

X0 = Xc + 
In i 

where 

2Vb 2 
A — ar2 + b 9 a 

andrc =Rm — ex2
c. 

The continuity ofRox{x) at x = xc gives us the first relation between Rm and p: 

(8) 

(9) 

f(Rm,p) 1+ 
' 3 

rc \ I rj - ar2 + b + 2exc = 0. (10) 

A second relation emerges from a condition of consistency, introduced in [3], obtained multiplying equation (4) by 
Ro(x) and integrating the real axis. Since RQ(X) is a symmetric function, the relation is reduced to: 

M M M 
g(Rm,p)=H- R2

0dx-I5- R4
0dx-y- R6

0dx = 0. 

The integrals can be evaluated and the result is: 

1 ' 
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3 
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The construction of relations f{Rm,p) = 0 and g{Rm,p) = 0 is essential because the existence of the pulses is 
conditioned by them: the pulse exist if the matching takes place. This occurs when the relations are simultaneously 
fulfilled and graphically implies the intersection between the curves that were defined in the (Rm,p) plane. 

Through this procedure the mechanism of pulses appearance has been explained: there is a critical value jici, so that 
fornix < jic\ the curves / = 0 and g = 0 do not intersect at any point suggesting that there are no pulses. For ji > jic\ the 
curves intersect in two points, that represent stable and an unstable pulses. This means that the appearance mechanism 
of pulses is a saddle-node bifurcation [11, 12]. 

MECHANISM OF STABLE PULSES DISAPPEARANCE 

If ji is further increased, then the numerical observations [7] show that the stable pulse disappears leading to the 
emergence of fronts [13]. Therefore, there is a second interesting critical ji (pa)-

From the point of view of the Matching Approach the disappearance of pulses is related to the restrictions imposed 
by xo (obtained in (8)), since it should be real. It is only in this way that the expression (7) ofRo(x) has sense. 
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The restriction in xo results from u* which is the result of the evaluation of y^u2. Hence, ul should be positive. The 
condition ul = 0 can be rewritten as a2 = 4b (near the intersection of / = 0 and g = 0). Then, p can be fixed in a 
constant value pcru through direct algebra. Next, XQ is real in the region p > pcrit (near the intersection). 

with 

<Xi 
3 (DrPr+DiPif 
16 DrYr+DM 1 + 

Pcrit 
\Dr\i - a\ + y

/a2-a3ii 

a2 

D2 

3 (DrPr+DjPi)' 
8 DrYr+DM 

M 2 

a3 
3 (DrPr+Djfr)2 DrDJ 
4 D^+A-tf |D|2 • 

(15) 

(16) 

Written in this way, it is clear that pcrit depends only on the parameters of (1), particularly of jl. 
In terms of /I, \lc2 sets the existence of the pulse (Fig. 2). For \i < \ic2 there is an intersection of / = 0 and g = 0 

where p > pcrit- This means that there exists a stable pulse (Fig. (2a) and (2b)). For /I > \ic2 the intersection of / = 0 
and g = 0 is obtained in p < pcrit- In this case there is an absence of pulse (Fig. 2c). It is necessary to notice that \ic2 

is such that the intersection occurs in p = pcr[t. 

Km 
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(a) 

0.9215 
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0.276 0.282 

P 
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0.9 
0.288 0.276 0.288 

FIGURE 2. The (Rm,p) plane for different jl. The thick continuous line corresponds to / = 0. The thick dotted line corresponds 
to g = 0. The thin line determines the validity of XQ: in the right side XQ is real. The thin dashed line corresponds to p = pCrit-

If 
the thick constant and dotted lines are intersected with p > pcrtu then there is stable pulse. The parameters used in every figure are: 
pr = l, p( = 0.2, yr = - 1 , ji = 0.15, Dr = 1, Dt = - 0 . 1 . (a) jl = -0.122 < jic2, the intersection of / = 0 and g = 0 is produced 
with p = 0.277841 > pcrit{p) = 0.277313. Therefore, there exists pulse, (b) p = —0.120 < pc2, the intersection is produced with 
p = 0.281575 > pcrit (/i) = 0.281523. There is pulse too. (c) p = —0.117 > pc2, there is an absence of pulse because the intersection 
occurs atp = 0.284637 < pCrit{p) = 0.287704. 

OBTENTION OF \icl 

For the Matching Approach all the variables and functions are written in only two free parameters Rm and p. however, 
the study of bifurcations has always included /i playing the same role. This is so because in the physical interpretation 
/I is a control parameter. For instance, in an Rayleigh-Bernard type experiment /i is proportional to the difference of 
temperatures AT" among the plates of the fluid layer. 

From this viewpoint, the functions / and g can be written as f(Rm,p, \l) and g(RmjpJ / i ) . On the other hand, it was 
already mentioned that the existence of pulses is determined by the condition p = pCrit(H>)- This condition eliminates 
one of the dependencies, and let us obtain \ic2 through the intersection of the functions, now in the (Rmj \l) plane. 

When the definition (11) of g, the integrals (12), (13), (14) and the conditions fixing pcrtt (ul = 0 and a2 = 4b) are 
observed, it is clear that the function g is undefined in Pcrit- Thus, and keeping in mind that the dominant terms of g 
are logarithms, it approaches to: 
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8apwx(Rm, M) = 8/x_ - 4j3_fl - 7- (3a2 - 4fc) = 0, (17) 

which is a function only of /i. Consequently, \ici is obtained explicitly: 

g 2 - ( a i - D r a 4 ) 2 

Mc2 = , (lo) 

With ry. - 3 DrPr+DiPi (ft 3yDrPr+DiPi\ 

In order to fix ideas we use (in Figs. 2 and 3) parameters [13] from which wide numerical results are known 
[7]. These parameters are /3r = 1, ft- = 0.2, yr = — 1, yl• = 0.15, £>r = 1, D; = —0.1. With them can be obtained: 
Mel = —0.16776 for the appearance of pulses and \iC2 = —0.117066 for their disappearance. When comparing the 
numerical simulations it is found that the method's error is approximately 1% and 5% respectively. 

Km 
0.96. -n 1 

0.861 — 1 
-0.15 -0.12 -0.09 

FIGURE 3. The (Rm,ji) plane. The thick continuous line corresponds to / = 0 and the thick dotted line corresponds to 
gappwx = 0, evaluated from (17). Using the same parameters than Fig. 2, jiC2 = —0.117066 can be obtained. 

CONCLUSIONS 

In this article we have focused on pulses using the QCGLE as a model. This envelope equation arises generically near 
subcritical bifurcations for systems with oscillatory dynamics. 

Firstly, we revised a quasi-analytical method to study pulses in a wide range of parameters. The method consists 
of approximating the shape of the pulse (its amplitude and phase gradient) separating the space into two regions: the 
core and outside the core, in order to impose continuity. With this scheme the appearance of pulses via saddle-node 
bifurcation was previously characterized, and one can obtain the minimum /i when the pulses exist. 

Then, one looks for the maximum ji when the pulses exist. For that, when one increases /i, one must check the 
validity of the approximation that guarantee the pulse existence. In particular, one can see that when the approximated 
solution of the pulse is explicitly written, one of its variables (xo) loses its physical sense. With this, we conclude that 
the pulse disappear leading to the emergence of fronts. The second /i of bifurcation (that is the maximum /i when the 
pulses exist) can be analytically approximated because the restrictions on xo simplify the matching conditions until 
\lc2 is fixed. When it is compared, \lc2 agree within 5% of recent numerical simulations. 

As a perspective, it would be interesting to apply these results to the two dimensional QCGLE (trivial generaliza
tion), where a radial pulse solution was observed with a very different existence range although the same parameters 
are used. 
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