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We show and characterize numerically moving breathing pulses in the one-dimensional complex cubic-
quintic Ginzburg-Landau equation. This class of stable moving breathing pulses has not been described before
for this prototype envelope equation as it arises near the weakly hysteretic onset of traveling waves.
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In extended systems forced to be out of equilibrium, by
moving only one control parameter, the primary instability
can be stationary, oscillatory, or lead to a wavy structure [1].
As the control parameter is increased the system may go
through a secondary instability [2] and lastly exhibit spa-
tiotemporal chaos. At the onset of a primary instability the
dynamics of a system can be captured by considering a
weakly nonlinear approach. The results are amplitude equa-
tions for the critical modes, which are universal in the sense
that they depend only on the type of instability and the sym-
metries of the problem, so that physical systems of different
nature may exhibit analogous behaviors. For one-
dimensional systems, assuming translational (x— x+«) and
parity (x— —x) symmetries (the time inversion — —¢ is not a
symmetry because of the dissipation), generic amplitude
equations result in (supercritical) complex cubic Ginzburg-
Landau (GL) equations, which have been studied for over
three decades [3]. In one-dimensional systems apart from
traveling waves and fronts the complex cubic GL equation
accepts sinks, sources, and hole solutions, as it was showed
by Nozaki and Bekki [4], but never stable pulses.

A mixture of binary fluids, heated from below, may ex-
hibit coexistence between conductive and convective states
giving rise to stable localized structures such as pulses [5].
Numerical simulations [6] and experiments [7] show that
large scale mean concentration current loops influence the
localized traveling wave, so that localized pulses in binary-
fluid mixtures are not weakly nonlinear structures. Neverthe-
less, at least formally, a system undergoing an oscillatory
instability with a finite wavelength and allowing localized
structures can be described, close to the instability, by
coupled complex cubic-quintic GL equations for counter-
propagating waves. Recently, this theoretical approach has
been successfully used to understand a universal mechanism
explaining partial annihilation of colliding dissipative pulses
[8]. Thus, we consider complex cubic-quintic GL equations
as useful phenomenological dispersive-dissipative models
supporting stable localized structures. When pulses and holes
are not interacting with each other they satisfy (in the mov-
ing frame) one-dimensional (subcritical) single complex
cubic-quintic GL equations [9,10],
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dA=uA+ BIAPA + yA*A + DI A. (1)

The subscript x denotes partial derivative with respect to x,
A(x,1) is a complex field, and the parameters B=,+if;, v
=v,+iv;, and D=D,+iD; are in general complex. The signs
of the parameters 8,>0 and ,<0 are chosen in order to
guarantee that the bifurcation is subcritical and saturates to
quintic order. The control parameter w is taken to be real
without loss of generality. Thual and Fauve [9] showed, two
decades ago, the existence of stable stationary pulses as long
as van Saarloos and Hohenberg [10] pointed out the fact
(from numerical observations) that stable stationary pulses
exist in a narrow range where there is a coexistence between
zero and the nonzero homogeneous solutions (traveling
waves). Coexistence of the trivial and the homogeneous so-
lution is not a sufficient condition to have stable localization
in Eq. (1). Indeed, Descalzi et al. [11] reported that the ap-
pearance of stationary pulses is related to a saddle-node bi-
furcation reducing the stability domain in agreement with
Saarloos and Hohenberg. Stationary solutions here mean that
the amplitude |A| only depends on space but not on time.
However, Re A and Im A are functions on space and time.
While hole solutions reported by Nozaki and Bekki [4]
for the complex cubic GL equation resulted to be structurally
unstable [3], two (structurally) stable stationary hole solu-
tions for the complex cubic-quintic GL equation were re-
ported by Sakaguchi [12]. In addition to the previous men-
tioned nonmoving fixed shaped solutions Eq. (1) admits
pulses, which can exhibit periodic, quasiperiodic, or chaotic
breathing motion [13]. More recently Descalzi and Brand
showed the existence of nonmoving breathing holes for pe-
riodic and Neumann boundary conditions [14,15]. Apart

TABLE I. Reported localized structures in the complex cubic-
quintic Ginzburg-Landau equation.

Pulses Holes
Nonmoving fixed shaped Refs. [9,10] Ref. [12]
Nonmoving breathing Ref. [13] Refs. [14,15]
Moving fixed shaped Ref. [16] Ref. [14]
Moving breathing Missing Refs. [14,15]
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FIG. 1. (Color online) Phase diagram of Eq. (1) in the (u,D;)
space for the parameters S3,=3, B;=1, y,=-2.75, y;=1, and D,
=0.9. (a) The picture shows regions for four different classes of
solutions when we start using ICP or ICA: zero states, stationary
pulses, nonmoving breathing pulses, and homogeneous solutions.
(b) Amplification of the depicted gray square in (a). ICAs lead to
chaotic pulses and moving breathing pulses (yellow or gray region)
close to the border separating regions of breathing pulses and ho-
mogeneous solutions.

from nonmoving objects the complex cubic-quintic GL equa-
tion admits also moving solutions either fixed shaped or
breathing. Afanasjev er al. [16] reported fixed shaped mov-
ing pulses, while fixed shaped moving holes have been stud-
ied in Ref. [14]. In both cases the motion is connected to the
spatial asymmetry of the solutions. The scenario for moving
breathing pulses and holes is different in the sense that while
moving breathing holes have been studied, either for periodic
or Neumann boundary conditions [14,15], the corresponding
moving breathing pulse is missing. For a compact picture see
Table 1. We note that the creeping soliton presented by Soto-
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FIG. 2. (Color online) (a) Space-temporal evolution of the am-
plitude of a moving breathing pulse. (b) Position of the top of the
amplitude of the moving breathing pulse as a function of time. The
velocity results to be v=0.001. The parameters are u=-0.0872,
B.=3, Bi=1, y,=-2.75, v;=1, D,=0.9, and D;=-1.1.

Crespo et al. [17] is related to composite pulses and not to
plain pulses. In a different context, namely, reaction-
diffusion systems, Mimura et al. reported oscillatory travel-
ing pulses with breathing motion [18]. We note that in the
one-dimensional complex cubic GL equation, without a sta-
bilizing quintic order term, chaotic, stationary, and time-
periodic states corresponding to a periodic array of pulses
have been found [19].

The goals of this Brief Report are to show and to study
the existence of moving breathing pulses (MBPs) in the one-
dimensional complex cubic-quintic Ginzburg-Landau equa-
tion. We have performed a numerical study of Eq. (1), using
a fourth-order Runge-Kutta method for the time evolution
(dr=0.05) and finite differences to approximate the spatial
derivatives (dx=0.4), in a typical domain L=240 (N
=600 points) with periodic boundary conditions. For com-
parison we also studied smaller and larger box sizes to guar-
antee that there are no finite size effects for sufficiently large
box size. We were performing up to 2 X 10° iterations to
check for long transients corresponding to a total time of 7'
=10°. We also changed dx and dt to verify that none of the
results presented depends sensitively on the discretization
used. The selection of boundary and initial conditions is a
very important issue by looking for solutions in the complex
cubic-quintic Ginzburg-Landau equation. Notice that Neu-
mann boundary conditions preclude the existence of moving
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FIG. 3. (Color online) (a) Snapshot of the amplitude of a breathing moving pulse. (b) Time series for the amplitude at x=x;, as a function
of time, in the moving frame. (c) Time series for the amplitude at x=xg, as a function of time, in the moving frame. Parameters are the same

as in Fig. 2.

objects [15]. In this work we use two classes of initial con-
ditions: initial conditions in phase (ICPs) and initial condi-
tions in antiphase (ICAs). The former is the typical one and
is obtained by using Im A(x)=0 and localized Re A(x) posi-
tive (or negative) and the latter (which may lead to moving
objects) by choosing Im A(x)=0 and Re A(x) with a positive
and a negative part.

Since Eq. (1) involves seven parameters and we can scale
the amplitude A, the time ¢, and the space x, the problem is
reduced to a four-dimensional parameter space. Setting the
parameters y and D real and 8= B,+if3;, Eq. (1) still remains
nonvariational due to the existence of B;. Using this ap-
proach in Ref. [20] we found zero states (for enough nega-
tive control parameter w), stationary pulses, stationary and
moving holes, and moving pulses. On the other hand, nega-
tive values of the linear dispersion D; may lead to breathing
solutions as it has been showed in [13,21]. Thus in this Brief
Report we use the parameters B8,=3, B;=1, v,=-2.75, y;=1,
D,=0.9, and D; negative and varied from O to —1.4. Figure 1
summarizes our results. In Fig. 1(a) we can see four different
classes of solutions when we start using ICPs or ICAs: zero
states, which mean that any perturbation decays to zero; sta-
tionary pulses; nonmoving breathing pulses; and homoge-
neous solutions, which are traveling waves whose ampli-
tudes are homogeneous.

Close to the border separating regions of nonmoving
breathing pulses and homogeneous solutions we found nar-
row regions of chaotic pulses and MBPs [see Fig. 1(b)]. Cha-
otic pulses can be reached using ICP or ICA, while MBPs
can only be reached with ICA. Thus there exists coexistence
between nonmoving and MBPs. A three-dimensional plot
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FIG. 4. (Color online) (a) Power spectrum of the time series for
the amplitude at x=x; (in the moving frame). (b) Power spectrum of
the time series for the amplitude at x=xz (in the moving frame).
Fundamental frequency wy=0.82.
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showing the space-time dynamics of a moving breathing
pulse is brought out in Fig. 2(a). Studying the position of the
top of MBP as a function of time we found out that MBPs
move with a constant speed [see Fig. 2(b)]. Setting all pa-
rameters fixed (including D;), except u, we can describe the
appearance (or disappearance) of moving breathing pulses by
moving the control parameter u. For D; fixed and in a certain
range of D,, there exist u=p; and u=pu,, so that for u
< u; we get nonmoving breathing pulses either for ICP or
for ICA. Increasing u and for u;<u<<u, we can obtain
moving breathing pulses by using ICA [see Fig. 1(b)]. We
conclude that at w=pu; (u=u,) MBPs appear (disappear)
through a saddle-node bifurcation. For the case D;=—1.1 the
bifurcation parameters are u;=-0.0888 and u,=-0.0858.
Further characterization of MBPs leads us to the analysis of
time series for the amplitude at fixed spatial points (in the
moving frame), x; and xg, which are equidistant from the
center of the breathing moving pulse (see Fig. 3). The power
spectra of both time series for the amplitudes at x=x; and
x=x (in the right moving frame) show a fundamental fre-
quency w,=0.82. However, the power spectrum associated to
x=x; shows subharmonic frequencies such as wg/2 [see Fig.
4(a)], while the power spectrum associated to x=xz shows
subharmonic frequencies such as wy/3 and 2w,/3 [see Fig.

PHYSICAL REVIEW E 80, 037202 (2009)

4(b)]. In the case of fixed shaped moving pulses [16] the
motion is connected to the asymmetry of the shape of the
pulse. For moving breathing pulses the asymmetry becomes
reflected in the differences between both power spectra as
signature of spatiotemporal asymmetry.

In summary we have shown the existence of moving
breathing pulses in the one-dimensional complex cubic-
quintic Ginzburg-Landau equation. Stationary, moving fixed
shaped, and nonmoving breathing pulses have been reported
before in the literature, but moving breathing pulses were
missing. In this Brief Report we have shown that moving
breathing pulses coexist with nonmoving breathing pulses
and are characterized by a constant speed and asymmetry
reflected in different power spectra of the time series for the
amplitude at fixed spatial points (in the moving frame),
which are equidistant from the center of the breathing mov-
ing pulse.
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