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Transition from pulses to fronts in the
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equation
BY PABLO GUTIÉRREZ1,2,*, DANIEL ESCAFF1 AND ORAZIO DESCALZI1

1Complex Systems Group, Facultad de Ingeniería, Universidad de los Andes,
Avenue San Carlos de Apoquindo 2200, Santiago, Chile

2Departamento de Física, FCFM, Universidad de Chile, Casilla 487-3,
Santiago, Chile

The cubic–quintic complex Ginzburg–Landau is the amplitude equation for systems in the
vicinity of an oscillatory sub-critical bifurcation (Andronov–Hopf), and it shows different
localized structures. For pulse-type localized structures, we review an approximation
scheme that enables us to compute some properties of the structures, like their existence
range. From that scheme, we obtain conditions for the existence of pulses in the upper
limit of a control parameter. When we study the width of pulses in that limit, the
analytical expression shows that it is related to the transition between pulses and fronts.
This fact is consistent with numerical simulations.
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1. Introduction

In this work, we are interested in systems out of thermodynamic equilibrium,
which are extended in space. This is the case for many topics in modern science,
such as hydrodynamics, chemical reactions, population dynamics, nonlinear
optics and granular media. One experimental example, closely related to our
work, is a binary-fluid layer that is heated from below and presents localized
pulses (Kolodner et al. 1988; Kolodner 1991).
More specifically, we are interested in bifurcations. Given a system with

particular symmetries, the bifurcation sets the partial differential equations that
must be used as a model. In our case, we are concerned with an oscillatory
sub-critical bifurcation (Andronov–Hopf) that is modelled by the cubic–quintic
complex Ginzburg–Landau (CGL) equation (van Saarloos & Hohenberg 1990,
1992; Descalzi et al. 2001). In this model equation, we will be interested in
bifurcations between its different stable solutions.
The cubic–quintic CGL equation has demonstrated an extraordinary richness

of stable solutions. Many different stable localized structures such as pulses
(Thual & Fauve 1988; Deissler & Brand 1994; Afanasjev et al. 1996) and holes
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(Sakaguchi 1991; Descalzi & Brand 2005; Descalzi et al. 2005) have been observed,
as well as coexistence between those structures (Hayase et al. 2004; Descalzi et al.
2006a) and their interactions (Descalzi et al. 2006b, 2007). However, this paper
will focus only on the particular case of pulses.
From the pioneering results of Thual & Fauve (1988), many theoretical

and numerical studies of pulses have been carried out (Fauve & Thual 1990;
Malomed & Nepomnyashchy 1990; Hakim & Pomeau 1991). We can remark on
the contribution of van Saarloos & Hohenberg (1990): they established that there
is a well-defined range of parameters where pulses can be found, and also, out of
that range, the system shows fronts.
Years later, Descalzi et al. (2002, 2003) pointed out that the emergence of pulses

takes place via a saddle-node bifurcation at the lower value of a control parameter
(Descalzi 2003). This important result comes from an approximation method for
pulses (called a matching approach), which is the basis for this work too.
Recently, mathematical conditions for the transition between pulses and

fronts (at the upper value of the control parameter) were obtained in order to
understand the second limit of the existence range of pulses (Gutiérrez & Descalzi
2007). But at that time, the meaning of those conditions remained unclear. Our
purpose now is to give an interpretation of those mathematical conditions and to
make comparisons among them and numerical simulations.

2. Approximating stable localized pulses

Our starting point is the cubic–quintic CGL equation,

∂tA= µA+ β|A|2A+ γ |A|4A+D ∂xxA, (2.1)

where the subscripts x and t denote partial derivatives with respect to space and
time, respectively. A(x , t) = r(x , t) exp{iφ(x , t)} is a complex field. The control
parameter µ is considered as real without losing generality. The parameters
β = βr + iβi , γ = γr + iγi and D =Dr + iDi are in general complex and contain
the information of the physical problem under study. In order to ensure that
the bifurcation is sub-critical and saturates to quintic order, it is necessary to
restrict ourselves to βr > 0 and γr < 0. For the homogeneous case, the system
shows coexistence of stable solutions in the range β2r /4γr ≤ µ ≤ 0.
If the localized structure is stationary, which means r is a function depending

only on the space, then it is possible to make the following ansatz (Thual & Fauve
1988),

A(x , t) =R0(x) exp{i(Ωt + θ0(x))}, (2.2)

where Ω is an unknown parameter. Replacing the ansatz in equation (2.1) one
obtains two real equations, and, after simple algebra, the results

0= µ+R0 + β+R30 + γ+R50 + R0xx − R0θ20x , (2.3)

µ−R0 = β−R30 + γ−R50 + 2R0xθ0x + R0θ0xx , (2.4)

with

µ+ = Drµ −DiΩ
|D|2 , β+ = Drβr +Diβi

|D|2 , γ+ = Drγr +Diγi
|D|2 ,
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Figure 1. Regions of approximation for a pulse. The thick line is the outside the core region. The
dotted line is the core region. (a) Modulus of the pulse R0. (b) Phase gradient θ0x .

µ− = Diµ +DrΩ
|D|2 , β− = Drβi −Diβr|D|2 , γ− = Drγi −Diγr|D|2

and |D|2 =D2r +D2i . It is important to note that, if θ0x is constant, one can
explicitly integrate equation (2.3). If the associated numerical simulations are
observed (Descalzi & Brand 2005; Descalzi et al. 2005), the validity of the
condition on θ0x becomes clear in almost the whole space, except around the
centre of the localized structure. This numerical fact allowed Descalzi et al. (2002,
2003) to propose the following approximation scheme (or matching approach): the
space is divided in one region near the centre of the pulse (core) and in another
region out of the centre of the pulse (outside the core) (figure 1).
Outside the core, where θ0x is constant (+p for x < xc and −p for x > xc ), one

can explicitly integrate equation (2.3). The solution is

R0(x) = ρ(|x |), (2.5)

where

ρ(x) = 2b1/4 exp{
√
p2 − µ+(x + x0)}√

(exp{2
√
p2 − µ+(x + x0)} + a/

√
b)2 − 4

, (2.6)

and a = −3β+/2γ+, b= −3(−µ+ + p2)/γ+. x0 is a constant that emerges from the
translation symmetry of the cubic–quintic CGL equation.
The frequency Ω can be asymptotically evaluated: Ω = (−Di(µDr −

2p2|D|2) + 2p|D|2
√

−µDr + p2|D|2)/D2r , which depends only on p (and on the
parameters of equation (2.1)).
Inside the core, one can approximate the functions R0(x) and θ0x(x) by their

first terms in Taylor expansion writing

R0(x) =Rm − εx2, θ0x(x) = −αx , (2.7)

where (Rm, ε,α) are unknown parameters. Rm is the maximum height of the pulse
at x = 0.
When equations (2.7) are included in equations (2.3) and (2.4), ε = (µ+Rm +

β+R3m + γ+R5m)/2 and α = β−R2m + γ−R4m − µ− are obtained. Now ε and α are
expressed in terms of (Rm, p) and on the original parameters of equation (2.1).
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Figure 2. The (Rm, p) diagram for different µ. The blue continuous line corresponds to f = 0. The
purple dotted line corresponds to g = 0. The region where R0 does not exist as a real variable
(which we call R) is drawn in pink and is enclosed by the thin red line. If the intersection of the
blue and purple lines takes place outside R, the pulse exists ((a) and (b)). On the other hand,
if the intersection takes place inside R, the pulse does not exist (c). To see the intersections in
detail, (d), (e) and (f ) are zooms of (a), (b) and (c), respectively. The parameters used in every
figure are βr = 1.125, βi = 0.2298, γr = −0.859375, γi =Di = 0 and Dr = 1. Only µ is varied: (a)
µ = −0.2340, (b) µ = −0.2320, (c) µ = −0.2290.

The next step in the matching approach is to impose continuity on the functions
at x c = −p/α. The continuity in R0(x) fixes the value of x0 in terms of Rm and p,

x0 = x c +
ln u∗√

−µ+ + p2
, (2.8)

where

u2∗ = 2
√
b
r2c

− a√
b

+

√√√√
(
a√
b

− 2
√
b
r2c

)2
−

(
a2

b
− 4

)
(2.9)

and rc =Rm − εx2c .
The continuity of R0x(x) at x = xc gives us a relation between Rm and p,

f (Rm, p) ≡
√

−γ+
3
rc

√
r4c − ar2c + b + 2εxc = 0. (2.10)

A second relation emerges from a condition of consistency (Thual & Fauve
1988), obtained by multiplying equation (2.4) by R0(x) and integrating in the
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Figure 3. Pulses in the phase diagram (µ,βi). Green dots are numerically simulated pulses. Blue
solid line (on the right) is the curve associated with equation (3.6), which corresponds to the
maximum value where pulses exist. Red dashed line (on the left) is the minimum value where pulses
exist, and it is obtained from the matching approach. βr = 1.125, γr = −0.859375, γi =Di = 0,
Dr = 1 and µM = −0.276136.

real axis. Since R0(x) is a symmetric function, the relation is reduced to

g(Rm, p) ≡ µ−

∫ 0

−∞
R20 dx − β−

∫ 0

−∞
R40 dx − γ−

∫ 0

−∞
R60 dx = 0. (2.11)

The integrals can be evaluated as in Descalzi et al. (2002). The existence of
pulses is restricted by the conditions f (Rm, p) = 0 and g(Rm, p) = 0 in the following
way: pulses exist if the matching between the two regions (core and outside the
core) takes place. This occurs when the conditions are simultaneously fulfilled,
and graphically it implies the intersection between the curves defined in the
(Rm, p) plane (figure 2).
Through this procedure, the mechanism of emergence of pulses has been

explained: there is a critical value µc1 at which, for µ < µc1, the curves f = 0 and
g = 0 do not intersect, implying that there are no pulses. For µ > µc1, the curves
intersect at two points that represent stable and unstable pulses. This means that
the emergence mechanism of pulses is a saddle-node bifurcation (Descalzi et al.
2002, 2003).

3. Transition from pulses to fronts

(a)Mathematical conditions

As demonstrated in Gutiérrez & Descalzi (2007), from a mathematical point of
view, the disappearance of pulses is related to R0, which is assumed to be real. If
µ is increased above the critical value µc2, R0 is no longer real. For that reason,
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pulses cannot exist. The region in the (Rm, p) plane, where R0 does not exist as
a real variable, will be called R (figure 2). When µ is increased, R invades the
(Rm, p) space. If the intersection of the curves f = 0 and g = 0 (in blue and purple,
respectively) takes place in R, the pulse does not exist. That is the case of figure
2c (zoom in figure 2f ).
In conclusion, there is a qualitative change in the system at µc2, where pulses

stop existing. At µc2, the intersection of f = 0 and g = 0 takes place at the border
of R, which is a straight line defined by the condition u2∗ = 0 (it implies a2 = 4b,
or

(
−p2 + µ+

)
= 3β2+/16γ+), which fixes p in the constant value pc

p2c = Drµ − α1 + √
α2 − α3µ

D2r
, (3.1)

with

α1 =
3
16

(Drβr +Diβi)2
Drγr +Diγi

(
1+ D2i

|D|2
)
, α2 =

(
3Di
8|D|

(Drβr +Diβi)2
Drγr +Diγi

)2

and

α3 =
3DrD2i
4|D|2

(Drβr +Diβi)2
Drγr +Diγi

.

In the dispersion-less case of Di = 0 and Dr = 1, coefficients α are reduced to
α1 = 3β2r /16γr ≡ µM (µ of Maxwell), α2 = α3 = 0, and expression (3.1) takes the
simpler form

p2c = µ − µM. (3.2)

To obtain µc2, we explicitly write f (Rm, p,µ) and g(Rm, p,µ), and then remove
p taking into consideration that pc depends only on µ, as can be seen in
equation (3.1). In this case, when p tends to pc, the expression of g takes the
form (more details are given in Gutiérrez & Descalzi (2007))

gp→pc(Rm,µ) ≡ 8µ− − 4β−a − γ−(3a2 − 4b) = 0. (3.3)

The above expression depends only on µ. Then µc2 can be obtained explicitly,

µc2 =
α2 − (α1 −Drα4)2

α3
, (3.4)

where

α4 =
3
4
Drβr +Diβi
Drγr +Diγi

(
βr − 3

4
γr
Drβr +Diβi
Drγr +Diγi

)
.

If we take the dispersion-less limit Di = 0, using Dr = 1 and defining
α5 = (2βia + γia2)/8

√−µM, we get a simpler expression of µc2, which is

µc2 = µM + α25. (3.5)

(b) Analytical prediction and numerical simulations

Equation (2.1) has seven parameters, but only four of them are relevant,
because we can re-scale amplitude A, space x and time t. As a particular case,
we can fix other parameters such as γi =Di = 0 and only two are necessary to
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describe the system. We will use µ as before, because it is the control parameter.
As the second parameter, we will use βi because it is the only non-variational
parameter (Dr = 1 for simplicity).
The phase diagram (µ,βi) is not simple a priori. From a numerical study,

it is possible to observe a lot of different localized solutions, as can be seen in
Descalzi et al. (2005). In this case, our goal is simpler. It is to compare numerical
simulations with the limit for the existence of pulses given by equation (3.5),
which is obtained from the matching approach.
Rewriting the earlier mentioned equation, we obtain

βi(µ) = 9γiβ
2
r − 32γ 2r

√
µM(µM − µ)

12γrβr
, (3.6)

and can plot a curve in the space (µ,βi), which can be seen as the blue solid line
on the right in figure 3.
For numerical computations, we use RK4 with dt = 0.1, dx = 0.4 and 600 points

to get a spatial box of L= 240. Localized structures are selected by the system,
given the parameters and an initial condition. We use the initial condition in
phase (Descalzi et al. 2005). In figure 3, the green dots correspond to numerically
simulated pulses. At the transition to fronts, their existence boundary is in good
agreement with the curve obtained from equation (3.6) (blue solid curve).

(c)Width of pulses

As can be seen from figure 4, if µ is increased near the critical value µc2, the
width of pulses enlarges abruptly. Then, studying the width of pulses could be
useful to characterize the transition from pulses to fronts, and it can be done using
the matching approach. One possible way to define the width * is by measuring
it at the half height of the pulse,

* = 2|xm|, (3.7)

where xm is the half width, defined to satisfy R0(xm) =Rm/2. Then it is equal to

xm = x0 − ln sm√
−µ+ + p2

, (3.8)

with

s2m = 8
√
b

R2m
− a√
b

+ 8
R2m

√
R4m
16

− aR
2
m

4
+ b.

If we use expression (2.8) of x 0, we obtain another equation for the half width

xm = xc +
ln(u∗/sm)

√
−µ+ + p2

, (3.9)

which contains the same singularities of x 0 (since sm does not reach zero in
the whole range explored by us). In particular, when u∗ tends to zero (at µc2),
xm diverges.
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Figure 4. Pulses close to the transition to fronts. (a) and (b) are the result of direct numerical
simulations of equation (2.1). In this case, at µ = −0.2299, the system selects another solution
and pulses cannot be observed. (c) and (d) are the approximated pulses done by the calculations
presented in §2. Here, from equation (3.5), the expected value of transition is µc2 = −0.230049.
Apart from µ, the parameters are the same as in figure 2.

Near µc2, the singularity of xm shows that, in the transition to fronts, pulses
become wider. This is presented in figure 5 (grey dashed line) and is compared
with the numerical simulation (solid line). The width of pulses going to infinity is
suggested in both computations. In the numerical case, infinite width cannot be
observed since the numerical method (RK4) has finite resolution. Using dt = 0.1
(our case), the parameters have a resolution of 10−4.
In order to get bifurcation diagrams (figure 6), we add unstable pulses to the

picture of stable pulses. Both exist since the bifurcation in the cubic–quintic CGL
equation is sub-critical.
Considering both kinds of pulses, we re-obtain that their emergence takes

place via saddle-node bifurcation (figure 6b). With regard to the disappearance
of pulses, it can be said that the stable ones lead to fronts at µc2 (increasing
their width to infinity), and the width of unstable pulses also tends to infinity
at µ = 0, but its amplitude tends to zero, collapsing with the homogeneous state
A= 0 (figure 6c and d).
Note that we are assuming that the stationary pulse obtained with the

matching approach is stable for all µ ∈ [µc1,µc2]. Our numerical study, keeping
only the non-variational parameter βi , is in good agreement with this assumption.
However, it has been reported in a high dispersion case (Tsoy et al. 2006), where
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Figure 5. Width of stable pulses as a function of µ. The grey dashed line is the width calculated
from equation (3.7). The solid line is the width measured from the numerically simulated pulses.
The straight dotted line corresponds to µc2 = −0.230049, which is obtained from equation (3.5).
Apart from µ, the parameters are the same as in figures 2 and 4.
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Figure 6. (a–c) Different views of the bifurcation diagram. It has been done from the approximating
scheme. Solid line corresponds to stable pulses, and dashed line corresponds to unstable pulses.
(a) Divergence of stable pulse when µ is close to µc2. (b) Emergence of pulses via saddle-node
bifurcation. (c) Divergence of the width of both stable and unstable pulses, in a larger scale of
µ. In (d), the maximum amplitude Rm for both kinds of pulses is shown. Note that Rm has no
singularities (stable pulses exist in a smaller range of µ). Apart from µ, the parameters are the
same as in figure 2.
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pulses have a region of pulsating behaviours. Eventually, the stationary pulse
undergoes a Andronov–Hopf bifurcation before the transition to front. This type
of instability could give rise to more complex bifurcation diagrams (Chang et al.
2007), including chaotic behaviours.

(d)Geometrical picture

The bifurcation scenario that we are proposing for the transition from
stationary pulses to fronts can be depicted in a more geometrical fashion.
Actually, we can rewrite equations (2.3) and (2.4) as a three-dimensional
dynamical system

R0x =W , (3.10)

Wx = −µ+R0 − β+R30 − γ+R50 + R0S2, (3.11)

Sx = µ− − β−R20 − γ−R40 − 2WS
R0
, (3.12)

where S = θ0x . Then, the stationary pulses that we analysed using the
matching approach corresponds to a heteroclinic orbit of the earlier dynamical
system, which links the hyperbolic points (R0,W ,S) = (0, 0, p) and (R0,W ,S) =
(0, 0,−p). The value of p is obtained by the matching procedure.
Therefore, the stationary pulses are like a ‘particle’ that follows a trajectory

(the heteroclinic orbit) in the phase space (R0,W ,S) of the dynamical
system (3.10), (3.11) and (3.12), as the ‘time’ x runs. As µ increases and
approaches the critical value µc2, the particle spends more time near the point
(R0(xc),R0x(xc), p), after it leaves the hyperbolic points (0, 0, p) (i.e. outside the
core). Then, it soundly changes from p to −p (inside the core) and repeats the
same pattern for −p, until it converges to the hyperbolic point (0, 0,−p). In
the limit µ → µ−

c2, the time spent near the points (R0(xc),R0x(xc),±p) tends to
infinity.
At the point µ = µc2, the dynamical system (3.10), (3.11) and (3.12) has a

heteroclinic orbit that links the hyperbolic points (0, 0, pc) and (ρ(∞), 0, pc) (as
well as for −pc), where

ρ(∞) =

√√√√−β+ +
√

β2+ − 4
(
µ+ − p2c

)
γ+

2γ+
; (3.13)

for that reason (µ+ − p2c ) = 3β2+/16γ+, which corresponds to the Maxwell point of
equation (2.3) for a fixed S ≡ pc. However, this orbit cannot be obtained from a
pulse generated for µ < µc2. Moreover, it cannot be obtained numerically, because
it demands an infinite size system. If the system has a finite size, we always need
a source of waves, which is in fact the core of the pulse.
What we observe numerically is that the width of the pulse tends to infinity

when µ increases and approaches the critical value µc2. For µ > µc2, we only
observe a propagative behaviour, which is not achievable by equations (2.3) and
(2.4) or equations (3.10)–(3.12), which are restricted for static solutions.
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4. Conclusions

We were concerned with systems that are modelled by the cubic–quintic CGL
equation. This equation accepts different stable solutions such as fronts and
localized structures (pulses and holes). We studied analytically the transition
from pulses to fronts.
More specifically, we reviewed an approximation scheme for pulses that give us

mathematical conditions for their existence in the parameter space. Using that
scheme, we obtained an analytical expression associated with the disappearance
of pulses. In a particular case, we checked the analytical expression with numerical
simulations by doing a phase diagram, and they are in good agreement.
In order to see what happens beyond pulses, we explored their width and saw

that it diverges at the expected critical value. The divergence in the width was
observed in numerical simulations too. Then, we concluded that pulses disappear
giving rise to fronts. Because the width is a good variable to describe pulses, we
constructed bifurcation diagrams. One of them, related to pulse emergence, is
consistent with a previously known result.
It is important to emphasize that the scenario proposed in this paper is related

to the stability of the stationary pulse, which is what is observed in most of the
dispersion-less cases. In high-dispersion cases, a more complicated scenario is
expected (Chang et al. 2007).
Finally, we conclude that with a simple approximation scheme for pulses, the

matching approach, we can get important features of their dynamics.
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Andes, 2008), FONDECYT (Project No. 1070098), FONDECYT (Project No. 3070013) and
Project Anillo en Ciencia y Tecnologia ACT15. The numerical simulations were done using the
software DIMX, developed in the Institut Non Linéaire de Nice, France. The authors also thank
Jaime Cisternas for helpful discussions.

References
Afanasjev, V. V., Akhmediev, N. & Soto-Crespo, J. M. 1996 Three forms of localized solutions
of the quintic complex Ginzburg–Landau equation. Phys. Rev. E 53, 1931–1939. (doi:10.1103/
PhysRevE.53.1931)

Chang, W., Ankiewicz, A., Akhmediev, N. & Soto-Crespo, J. M. 2007 Creeping solitons in
dissipative systems and their bifurcations. Phys. Rev. E 76, 016 607-1–016 607-8. (doi:10.1103/
PhysRevE.76.016607)

Deissler, R. J. & Brand, H. R. 1994 Periodic, quasiperiodic, and chaotic localized solutions of
the quintic complex Ginzburg–Landau equation. Phys. Rev. Lett. 72, 478–481. (doi:10.1103/
PhysRevLett.72.478)

Descalzi, O. 2003 On the stability of localized structures in the complex Ginzburg–Landau equation.
Physica A 327, 23–28. (doi:10.1016/S0378-4371(03)00432-1)

Descalzi, O. & Brand, H. R. 2005 Stable stationary and breathing holes at the onset
of a weakly inverted instability. Phys. Rev. E 72, 055 202-1–055 202-4(R). (doi:10.1103/
PhysRevE.72.055202)

Descalzi, O., Martinez, S. & Tirapegui, E. 2001 Thermodynamic potentials for non-equilibrium
systems. Chaos Solitons Fractals 12, 2619–2630. (doi:10.1016/S0960-0779(01)00077-7)

Descalzi, O., Argentina, M. & Tirapegui, E. 2002 Stationary localized solutions in the subcritical
complex Ginzburg–Landau equation. Int. J. Bifur. Chaos 12, 2459–2465. (doi:10.1142/
S0218127402005960)

Phil. Trans. R. Soc. A (2009)

 on 20 July 2009rsta.royalsocietypublishing.orgDownloaded from 



3238 P. Gutiérrez et al.

Descalzi, O., Argentina, M. & Tirapegui, E. 2003 Saddle-node bifurcation: appearance mechanism
of pulses in the subcritical complex Ginzburg-Landau equation. Phys. Rev. E 67, 015 601-1–
015 601-4(R). (doi:10.1103/PhysRevE.67.015601)

Descalzi, O., Gutiérrez, P. & Tirapegui, E. 2005 Localized structures in nonequilibrium systems.
Int. J. Mod. Phys. C 16, 1909–1916. (doi:10.1142/S0129183105008424)

Descalzi, O., Brand, H. R. & Cisternas, J. 2006a Hysteretic behavior of stable solutions at the
onset of a weakly inverted instability. Physica A 371, 41–45. (doi:10.1016/j.physa.2006.04.085)

Descalzi, O., Cisternas, J. & Brand, H. R. 2006b Collisions of pulses can lead to holes via front
interaction in the cubic–quintic complex Ginzburg–Landau equation in an annular geometry.
Phys. Rev. E 74, 065 201-1–065 201-4(R). (doi:10.1103/PhysRevE.74.065201)

Descalzi, O., Cisternas, J., Gutiérrez, P. & Brand, H. R. 2007 Collisions of counter-propagating
pulses in coupled complex cubic–quintic Ginzburg–Landau equations. Eur. Phys. J. Spec. Top.
146, 63–70. (doi:10.1140/epjst/e2007-00169-8)

Fauve, S. & Thual, O. 1990 Solitary waves generated by subcritical instabilities in dissipative
systems. Phys. Rev. Lett. 64, 282–284. (doi:10.1103/PhysRevLett.64.282)

Gutiérrez, P. & Descalzi, O. 2007 Existence range of pulses in the quintic complex Ginzburg–
Landau equation. In Nonequilibrium statistical mechanics and nonlinear physics (eds O.
Descalzi, O. A. Rosso & H. A. Larrondo), pp. 127–132, AIP Conf. Proc., no. 913. Melville,
NY: American Institute of Physics.

Hakim, V. & Pomeau, Y. 1991 On stable localized structures and subcritical instabilities. Eur. J.
Mech. B/Fluids 10, 137–143.

Hayase, Y., Descalzi, O. & Brand, H. 2004 Coexistence of stable particle and hole solutions for fixed
parameter values in a simple reaction diffusion system Phys. Rev. E 69, 065 201-1–065 201-4(R).
(doi:10.1103/PhysRevE.69.065201)

Kolodner, P. 1991 Collisions between pulses of traveling-wave convection. Phys. Rev. A 44, 6466–
6479. (doi:10.1103/PhysRevA.44.6466)

Kolodner, P., Bensimon, D. & Surko, C. M. 1988 Traveling-wave convection in an annulus. Phys.
Rev. Lett. 60, 1723–1726. (doi:10.1103/PhysRevLett.60.1723)

Malomed, B. A. & Nepomnyashchy, A. A. 1990 Kinks and solitons in the generalized Ginzburg–
Landau equation. Phys. Rev. A 42, 6009–6014. (doi:10.1103/PhysRevA.42.6009)

Sakaguchi, H. 1991 Hole Solutions in the complex Ginzburg–Landau equation near a subcritical
bifurcation. Prog. Theor. Phys. 86, 7–12. (doi:10.1143/PTP.86.7)

Thual, O. & Fauve, S. 1988 Localized structures generated by subcritical instabilities. J. Phys.
France 49, 1829–1833. (doi:10.1051/jphys:0198800490110182900)

Tsoy E., Ankiewicz A. & Akhmediev N. 2006 Dynamical models for dissipative localized waves of
the complex Ginzburg–Landau equation. Phys. Rev. E 73, 036 621-1–036 621-10. (doi:10.1103/
PhysRevE.73.036621)

van Saarloos, W. & Hohenberg, P. C. 1990 Pulses and fronts in the complex Ginzburg–
Landau equation near a subcritical bifurcation. Phys. Rev. Lett. 64, 749–752. (doi:10.1103/
PhysRevLett.64.749)

van Saarloos, W. & Hohenberg, P. C. 1992 Fronts, pulses, sources and sinks in generalized complex
Ginzburg–Landau equations. Physica D 56, 303–367. (doi:10.1016/0167-2789(92)90175-M)

Phil. Trans. R. Soc. A (2009)

 on 20 July 2009rsta.royalsocietypublishing.orgDownloaded from 


