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Phase transition in an out-of-equilibrium monolayer of dipolar vibrated grains
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We report an experimental study on the transition between a disordered liquidlike state and an ordered solidlike
one, in a collection of magnetically interacting macroscopic grains. A monolayer of magnetized particles is
vibrated vertically at a moderate density. At high excitation a disordered, liquidlike state is observed. When the
driving dimensionless acceleration � is quasistatically reduced, clusters of ordered grains grow below a critical
value, �c. These clusters have a well-defined hexagonal and compact structure. If the driving is subsequently
increased, these clusters remain stable up to a higher critical value, �l . Thus, the solid-liquid transition exhibits
a hysteresis cycle. However, the lower onset �c is not well defined as it depends strongly on the acceleration
ramp speed and also on the magnetic interaction strength. Metastability is observed when the driving is rapidly
quenched from high acceleration, � > �l , to a low final excitation, �q . After this quench, solid clusters nucleate
after a time lag, τo, either immediately (τo = 0) or after some time lag (τo > 0) that can vary from seconds up
to several hundreds of seconds. The immediate growth occurs below a particular acceleration value, �s (� �c).
In all cases, for t � τo a solid cluster’s temporal growth can be phenomenologically described by a stretched
exponential law. The evolution of the parameters of this law as a function of �q is presented and the values of
fitted parameters are discussed.

DOI: 10.1103/PhysRevE.87.022204 PACS number(s): 45.70.−n, 05.70.Ln

I. INTRODUCTION

Granular matter dissipates energy by friction and inelastic
collisions, therefore an external driving is necessary to observe
dynamical behaviors. Despite their intrinsic macroscopic
and nonequilibrium nature, the resulting excited state, from
granular gas to an ordered compact set of grains, often shares
similarities with thermal systems described by statistical
physics at equilibrium. However, important nonequilibrium
features emerge, like the absence of a universal effective
temperature, deviations from Fourier’s conduction law, spa-
tiotemporal instabilities, the absence of scale separation, and so
forth. Granular matter is therefore a good candidate in which to
study nonequilibrium phase transitions between these different
excited states [1,2].

The transition of granular media from liquidlike to solidlike
states has already been reported. Under shearing or vertical
tapping, monodisperse spheres tend to collectively organize
themselves in the most dense crystal state [3–6]. When a
monolayer of grains that is confined between two horizontal
plates is vibrated vertically, unexpected ordered structures
nucleate from the liquid state at high excitation [7–9]. This
phase separation is driven by the negative compressibility of
the effective two-dimensional fluid, as in the van der Waals
model for molecular fluids [9].

In the present experiment, we are concerned with granular
systems where an another interaction is added to the usual
hard sphere collisions. To do so, we use premagnetized
spheres. Magnetized spheres have been studied under an
external applied magnetic field [10,11]. When a set of these
magnetized spheres, compacted by gravity, is submitted to a
vertical magnetic field, the surface of the granular packing is
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destabilized above a given onset and forms peaks [10]. When a
granular gas is submitted to an increasing horizontal magnetic
field at a given excitation, a transition to a clustered state
is observed [11]. A mixture of magnetic and nonmagnetic
spheres has been also studied in a configuration similar to
ours, but at a lower surface fraction of the magnetic particles
and in a horizontal plate with no top lid, which limits the energy
injection as the system is kept in a quasi-two-dimensional state.
In this mixed system, authors have focused on the existence
and the growth in time of clusters composed of solely magnetic
particles, in the bath of nonmagnetic ones, as a function of
control parameters [12,13].

In our study, no external field is added and the remanent
magnetic moment, present in all the particles, generates
a dipolar interaction between them. This kind of two-
dimensional (2D) dipolar liquid [with three-dimensional (3D)
magnetostatics] has been extensively studied numerically in
order to understand the transition from isolated to branched
chains [14–16]. Compared to our experiments, an important
difference is that these numerical studies are performed at
equilibrium. Also, they use a lower surface density, φ =
Nπd2/(4L2) ≈ 0.3–0.4 (where d is the particle diameter, N

is the number of particles, and L is the system size). Nu-
merical studies also introduce the reduced temperature T ∗ =
kBT /(μ2/d3), where μ is the particle’s magnetic moment.
Although it was not easy to estimate it in our experiments,
we verified at least that the attractive force between particles
with aligned moments is weak. Actually, two particles have
to be almost in contact to get an attraction that overcomes
their own weight, meaning that μ2/d3 ∼ mgd, with m being
their mass and g the gravity acceleration. Therefore T ∗ can be
crudely estimated by T ∗ ∼ m(Aω)2/(μ2/d3), using a granular
temperature proportional to the energy per grain, provided
by a vibration of amplitude A and angular frequency ω, and
using μ2/d3 ∼ mgd. One gets T ∗ ∼ �A/d ∼ 0.2–0.6, which
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is actually in the temperature range accessible numerically. A
comparison between experiments and numerical studies seems
promising.

Here, we present an experimental study of the behavior
of a layer of premagnetized particles at low density, i.e.,
constituting a sub-monolayer occupying only slightly more
than half of the cell surface. Particles are confined in a
shallow geometry, with a height that is small compared to the
horizontal dimensions. The system is therefore quasi-2D with
3D magnetostatics. The experimental cell is submitted to ver-
tical vibration, the control parameter being the dimensionless
acceleration � = Aω2/g, which is varied keeping constant the
driving frequency ω.

This paper is organized in the following way: a description
of our experimental device and procedures is presented in
Sec. II. Then, we present first, in Sec. III A, the behavior of
the system when the control parameter � is quasistatically
reduced or increased. Below a critical value of �, clusters
organize in a hexagonal lattice. A hysteretic behavior is
observed whether the acceleration of the cell is increased or
decreased. In Sec. III B, we present results starting from a
liquidlike state, from which we quench the system into the
hysteresis region in order to study the dynamical growth of the
ordered phase. After presenting our experimental observations
on the dynamical evolution of solid clusters, we show that
their growth can be fitted by a stretched exponential law. The
evolution of the parameters of this law as a function of the
quenched acceleration is presented and the values of fitted
parameters are discussed. In the last section, Sec. IV, we
present a discussion of our results as well as our conclusions.
Some future perspectives are also outlined.

II. EXPERIMENTAL SETUP AND PROCEDURES

The experimental device, illustrated in Fig. 1, is similar
to the one presented in Refs. [17,18]. Stainless steel spheres
(type 422) of diameter d = 1 mm are confined between two
horizontal glass plates, which have an indium titanium oxide
(ITO) coating layer to prevent static electricity (resistivity,

FIG. 1. (Color online) Sketch of the experimental setup. The
cell contains the quasi-2D box where grains are confined between
two ITO-coated glass plates. The box is placed above an array of
light-emitting diodes and a camera takes pictures of the particles
from above. An accelerometer measures the applied dimensionless
acceleration � = Aω2/g.

7.5 × 10−6 �m; thickness, 25 nm). The dimensions of the
cell are as follows: the gap between the plates, h = 1.8d;
and lateral dimensions, Lx = Ly = L = 100d. The cell is
submitted to sinusoidal vibration z(t) = A sin(ωt), provided
by an electromagnetic shaker. We take care to screen its
magnetic field. The cell is illuminated from below by an
array of light-emitting diodes. A camera takes pictures from
the top. Typical images are shown in Fig. 2. Almost all
particles are tracked using an open source MATLAB code
[19], which works well for the sub-monolayer surface filling
fractions that are used. The cell acceleration, a(t) = z̈(t),
is measured with a piezoelectric accelerometer fixed to the
base. Our control parameter is the dimensionless acceleration
� = Aω2/g. Results presented here have been obtained with
the filling fraction density φ = 0.59, where N = 7372 is the
number of spheres, frequency f = ω/2π = 100 Hz, period of
base oscillation P = 1/f = 0.01 s, and � = 3–5.3. We have
verified that the phenomenology is not qualitatively affected
by the number of particles as long as the system is not too
dense.

A major experimental challenge is to keep constant the
magnetization of the spheres. Indeed, depending on the mag-
netization procedure, some shifts occur for the acceleration
onset values, although the qualitative behavior of the system
remains the same. Grains are magnetized by contact with a
strong Neodyme magnet. Some additional thermal treatments
have also been probed to maintain the magnetization. The
magnetic moment acquired by the spheres is partially lost when
the system is vibrated for long times. This loss of interaction
strength is produced by collisions and local particle heating.
This issue is discussed in more detail below, in particular, when
we present experimental results of quasistatic acceleration
ramps.

Starting from a homogeneous liquid state at � = 5, and
decreasing A at ω fixed, we observe that for � � 3.4 clusters
of ordered grains grow almost immediately, as shown in
Fig. 2 (right panel). In contrast to numerical simulation
predictions where all particles form chains [14–16], here
clustered particles are well organized in a 2D triangular crystal,
except at the edge of the cluster where more linear chains
coexist with disordered liquidlike particles. In fact, the precise
cluster’s topology depends on � and the speed at which the
solid cluster grows. For rapid changes in driving from high
acceleration to � ∼ 1–3, the solid phase will grow quickly and
will be first formed by many subclusters separated by defects
as well as many linear chains. However, if driving is varied
slowly from a liquid state, a single cluster will first nucleate
and then grow slowly, with a smaller amount of defects, like
the one shown in Fig. 2 (right panel).

We used Delaunay triangulation, which relates three nearest
neighbors, in order to define the number of particles belonging
to a cluster, Nc. Several triangles coincide with a particle, and
if at least one of them has an area, A, smaller than 0.5d2, then
the particle is assumed to be in a cluster. The precise value of
the onset does not modify qualitatively the results presented
here. It has been chosen in order to find all the particles inside
a cluster in the cell, as in the example shown in Fig. 2 (right
panel). Some particles in the liquid phase will inevitably fit
this condition as well. This will add a background noise of
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FIG. 2. (Color online) Left: Disordered liquid-state snapshot, � = 5. Yellow (white) dots show groups of more that 10 particles that meet
the criterium used for defining particles in a solid cluster. In this liquid state, these clusters are continuously forming and disappearing, tracing
density fluctuations. Right: Coexistence of solid and liquid phases, � = 3.5. The solid cluster presents a hexagonal order. It is about two-thirds
of its final size. Eventually, it will be composed of about 6500 particles, approximately 85% of all particles.

about 1000 particles belonging to small unstable, short-living
clusters. As shown in Fig. 2 (left panel), it is the trace of density
fluctuations in the liquid phase.

III. EXPERIMENTAL RESULTS

A. Quasistatic acceleration ramps

We first present results obtained performing quasistatic
cooling and heating ramps, by slowly decreasing and increas-
ing the driving acceleration, respectively. In Fig. 3, we plot
the fraction of particles inside a cluster, Nc/N , as a function
of �. Black symbols represent the fraction of crystallized
particles when the acceleration is slowly decreased from the
liquid state, whereas green (gray) ones represent this quantity
when the acceleration is slowly increased. Each similar pair
of symbols corresponds to different experimental realizations.
More precisely, the procedure is the following. First the system
is set at high acceleration (� ≈ 5). The system is left to evolve
to a stationary state during a waiting time, tw . Then, five images
are acquired at a rate of 1 fps. Immediately after, � is reduced
by a small amount and the system is again left to evolve
during tw until the next acquisition of images. This procedure
is repeated until we reach the lowest acceleration of about
� = 3.1. Then, the same procedure is used but � is increased
until the completely fluidized state is obtained again. For most
of the symbols in Fig. 3, tw = 15 s (i.e., tw = 1500P ). For one
case [black and green (black and gray) diamonds in Fig. 3],
the acceleration was first increased up to the gas state and then
decreased. No difference in the resulting curves is observable
for a loop realized in this opposite way. In two cases, the
waiting times are different: ramps with waiting times of 30 s

t

µ

a b c

FIG. 3. (Color online) Fraction of particles inside a cluster Nc/N

as function of �. Acceleration is varied quasistatically. Black and
green (black and gray) symbols indicate the results when � is reduced
and increased, respectively. Several ramps are shown for different
realizations. Each pair of symbols corresponds to a closed � loop,
performed in this order: ◦, ◦, ∗, ∗, �, �, +, +, �, �, �, �, •,
•. For each ramp, � is varied with a waiting time of 15 s before
obtaining images during 5 s at 1 fps. There are two exceptions: ramps
for 30 s (+, +) and 180 s (•, •) waiting times. Magnetization is
reduced after many hours of experiments, evident in some of the
the decreasing ramps (+, �, �), where the transition � is reduced,
although not so in their correspondent increasing ramps (+, �, �).
The last two ramps correspond to a longer waiting time (180 s, •, •)
for which the transition point again is practically the same as before.
Inset: schematic representation of magnetic moment dependence
on time.
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[tw = 3000P : black and green (black and gray) crosses] and
180 s [tw = 18000P : black and green (black and gray) solid
circles]. In the caption of Fig. 3, we indicate the order in which
these ramps were realized. Particles were not remagnetized
during all the experiments presented in this figure.

The inset of Fig. 3 shows a schematic representation of the
variation of the average magnetic dipole moment μ with time.
Here, “time” means vibration oscillations, i.e., time during
which the particles are in a fluidized collisional state at a
given �. Three stages are identified (a, b, and c), and the
vertical dotted lines indicate the transitions between them.
The exact positions of the different transitions depend on � and
the particular magnetization procedure. Stage a is character-
ized by a fast decrease of μ; for � ∼ 5, this can endure for a few
tenths of a minute. Later, stage b corresponds to a stable aver-
age magnetization, which typically lasts for several hours. And
finally, after many particle collisions, μ continues to decay.

The main result of Fig. 3 is that, for the current cooling
and heating rates and procedure, there is a stable loop with
two transition points: from a homogeneous liquid to a solid-
liquid coexistence at �c = 3.9 ± 0.1, and from a solid-liquid
coexistence to the homogeneous liquid state at �l = 4.8 ± 0.1.
Thus, when the driving is slowly increased, the last cluster
disappears always at a critical value which is higher than the
value at which the first crystal appears when the driving is
decreased: �l > �c. We refer to this loop as the quasistatic
hysteresis loop (stage b), although it is not reproducible for
very long experiments because of a reduction in the particle’s
magnetization (stage c).

Indeed, some curves obtained for decreasing ramps have
different �c values as shown by the symbols +, �, and � in
Fig. 3. These shifted curves, which result in a lower transition
acceleration value (�c ≈ 3.5) from the liquid state to the
coexistence of solid and liquid phases, correspond to later runs
without remagnetization in between. Therefore, these shifts
are mainly due to particle demagnetization. However, for such
runs, �l does not change. We remark that when the waiting time
tw is increased to 180 s (18 000P ), black and green (black and
gray) solid circles in Fig. 3, even with a lower magnetization,
the previous hysteretic cycle is recovered. It seems that for a
lower magnetization and with tw = 1500P or tw = 3000P , we
do not wait enough to obtain the crystal growth. Thus, the loss
of magnetization seems to increase the time necessary to get
a quasistationary state. However, beyond this variability, the
main qualitative feature remains the hysteretic behavior with
�c < �l .

Finally, measurements not shown here that are performed
just after remagnetization (stage a) show that both �c and �l

are shifted to higher values, whereas measurements made later,
for very long experimental times after magnetization (very late
times in stage c), present both �c and �l shifted to lower values.

B. Quench experiments

Knowing the onset of crystallization, we now study the
dynamics when the homogeneous liquid phase is quenched.
Starting from � = 5, we reduce suddenly the driving to a
final value �q between 3 and 4.5. We then acquire images
at a low frame rate (0.5 fps) for several minutes. The typical
measurement time is 10 min (tm = 6 × 104P ) in order to keep
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FIG. 4. (Color online) Fraction of particles that form part of a
solid cluster, Nc/N , versus time t/P , for several �q (quenched state).
Initial time t = 0 corresponds to the moment � is abruptly quenched
from � = 5 to �q . For each run, images are acquired during 10 min,
equivalent to 6 × 104P . From left to right �q = 3.15, 3.31, 3.42,
3.53, 3.63, 3.74, 3.94, 4.13, and 4.02. For �q = 3.80 and 4.2 there
was no transition within the observation time. Continuous lines show
fits for stretched exponential growth law, Eq. (1). On average, for
increasing �q , τ and τo increase and N∞ decreases.

constant the particle’s magnetic dipole moment during the
complete run (that is, for all the quenches), although some runs
with tm = 20 min have also been realized (tm = 1.2 × 105P ).
For each image, we compute Nc, the total number of particles
that belong to a solid cluster.

The temporal evolution of Nc is shown in Fig. 4 for different
values of �q . This series of quench experiments was performed
in between the quasistatic loops identified by black diamonds
and crosses in Fig. 3. Two time scales are clearly present: a
growth time, τ , and a time lag, τo. Clusters grow slower for
higher �q . For �q � 3.4, clusters grow immediately (τo = 0);
for higher �q , cluster’s nucleation is delayed (τo > 0). This
allows us to define for this realization �s ≈ 3.4 as the
acceleration below which τo ≈ 0. In the case τo > 0 the system
is metastable: it can be either in a homogeneous liquid phase
or in a solid-liquid phase separated state. The transition from
the former to the latter occurs if there is a density fluctuation
strong enough to nucleate crystallization. Additionally, this
density fluctuation has to have particles aligned in such a
way that they can bind together. As �q approaches �l , this
fluctuation has to be stronger (more dense), because the
granular temperature is higher. Thus, it becomes less probable
too. However, at the same time, its final size is smaller,
requesting less binding energy. The corresponding lag time τo

becomes usually larger, but its dependence on the appearance
of the correct density fluctuation makes it highly variable from
one realization to another. The general results are valid for
every quench experiment done in the stable hysteresis loop:
For �q approaching �l , the crystal growth time τ increases, the
asymptotic number of particles in the solid phase decreases,
and the lag time τo seems to increase on average but its variance
seems to increase too (many more independent realizations are
needed to study τo properly).
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FIG. 5. (Color online) Fitted parameters α (a), N∞ (b), τ (c), and τo (d) as functions of �q . For panels (a) and (b) symbols on the x axis
correspond to realizations for which the phase separation was not achieved in the experimental observation time. Open circles (◦) represent raw
data obtained from several independent ramps, whereas solid squares (�) correspond to averages using 10 equal size windows in the complete
�q data range. Error bars were computed from standard deviations of the experimental points in each window. In panel (b), open circles (◦)
have a total measurement time tm = 6 × 104P , but some data are shown for tm = 12 × 104P (�). Solid circles (•) show some of the quasistatic
heating curves from Fig. 3. In panels (c) and (d) the growth time τ and the lag time τo are plotted in semi-log scale. Both times increase strongly
as �l = 4.8 is approached. The continuous line in panel (c) shows a linear fit, log(τ/P ) = a∗�q + ã, with a∗ = 4.1 ± 0.5. The dashed line in
panel (d) indicates the boundary below which clusters grow immediately after a quench.

In Fig. 4 we also present our data fitted by a stretched
exponential growth law,

Nc(t) = N∞ + (No − N∞) exp{−[(t − τo)/τ ]α}, (1)

where N∞ is the asymptotic number of particles in the solid
phase and τ the growth time. No is the background “noise”
in the measurement of the number of solid particles; in the
liquid state, there are many small short-lived clusters that are
considered as being composed of particles in a solid phase
(see Fig. 2). Together with the exponent α and time lag τo,
the quantities N∞, τ , and No are used as fit parameters.
This stretched exponential law has been used in first-order
phase transitions to model the growth of the stable phase into
the metastable one [20]. It has also been used to describe
the compaction of a sand pile under tapping [4]. In our
case, the adjustment shown by the continuous lines in Fig. 4 is

very good. The exponent α fluctuates around 1/2 as a function
of �q , as shown in Fig. 5(a) (data on the x axis correspond to
realizations for which the phase separation was not achieved
in the experimental observation time). In fact, the results that
are discussed in what follows do not depend strongly on the
fact that α can be left as a free parameter or fixed to α = 0.5.

The dependence of N∞ on �q is shown in Fig. 5(b). The
asymptotic fraction of particles in the solid phase, N∞/Nc,
decreases for high quenching accelerations, from ≈0.9 for
�q = 3–3.4 to ≈0.6 at �q ≈ 4. We notice that except for some
experiments where we do not wait enough to overcome the
time lag τo (data on the x axis), the value of N∞(�q) collapses
with the one obtained for Nc(�) by quasistatic heating,
showing that we really perform an adiabatic modification
of the forcing for the heating case with our quasistatic
procedure.
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In Figs. 5(c) and 5(d) we present τ and τo as functions
of �q . Our results show that both times increase strongly
in a small range of �q : about 2 orders of magnitude for
�q between 3.1 and 4.1. The longest measured growth and
lag times, for �q ≈ 4.1, are τ ≈ 3.5 × 104P = 350 s and
τo ≈ 5 × 104P = 500 s. If �q is approached to �l = 4.8,
the lag time τo becomes larger than the measurement time
tm and no transition from the homogeneous fluid state to
the coexistence between solid and fluid phases is observed.
In the short parameter range where Eq. (1) can be verified,
we obtain τ ∼ exp(a∗�q), with a∗ = 4.1 ± 0.5. Concerning
the time lag τo, we observe that it is highly variable; many
more experiments seem necessary in order to obtain significant
statistics. For �q < �s = 3.4, this time lag tends to a constant,
τo ∼ 1 s. As we acquire images at 0.5 fps, this saturation seems
artificial. In fact, after doing many realizations we conclude
that for �q < �s = 3.4 the solid cluster seems to grow
immediately with no delay. Notice that, defined this way, �s is
different and lower than �c. Thus, our current measurements
do not allow us to measure small values of τo with enough
precision. However, for �q > �s = 3.4, τo is a few tenths of
a second, and, despite the poorer statistics, a strong growth is
observed. Finally, the strong increases for both τ and τo are
the reason we cannot get closer to �l within the experimental
observation times. For example, for �q = 4.5 and �q = 4.8,
the extrapolation for τ gives τ ∼ 105P ∼ 1000 s and τ ∼
4 × 105P ∼ 4000 s, respectively. Because τo also would
increase significantly, then very long measurement times
would be needed and particles would decrease significantly
their magnetic interaction strength during these experiments.

IV. DISCUSSION AND CONCLUSIONS

In summary, quasistatic cooling and heating of a layer
of dipolar interacting spheres is performed by slow changes
of the driving acceleration. The system exhibits a hysteretic
phase transition between a disordered liquidlike phase and an
ordered phase. The ordered phase is formed by dense clusters,
structured in an hexagonal lattice, coexisting with disordered
grains in a liquidlike phase. By quenching the system in the
vicinity of the transition, we study the dynamical growth of
the ordered clusters, which can arise after a time delay. The
time evolution of the number of particles in the solid-crystal
phase is well fitted by a stretched exponential law.

The first point to discuss is why we do not observe
particles in a state of branched chain, as reported in numerical
simulations [14–16]. Indeed our filling fraction, φ = 0.59, and
the reduced temperature, T ∗ ∼ 0.4, are not so far from the
values used in Refs. [14–16]. However, we do not observe
the branched state reported in these studies, at least not
as a stable, stationary configuration. For our experiment, as
mentioned in Sec. II, if a quench is done deeply into the solid
phase, �q ∼ 1–3, then many small solid clusters are formed
quickly and many linear chains are present. However, this state
eventually evolves to a more densely packed state, with almost
no linear chains, in coexistence with the liquid phase. More
systematic experiments should be performed to study properly
this aging process. We conjecture that a stronger magnetic
interaction might lead to favor stable linear chains.

Compared to numerical simulations, one of the major
differences is in the vertical vibration imposed in our exper-
iment to sustain particle motion. Indeed, instead of the 2D
thermal motion used in numerical studies, a particle in the
solid phase collides with the bottom and top plates during
an excitation period. The vertical motion might disadvantage
the formation of long chains, and compact clusters might be
more stable under such driving. In addition, the fact that our
experiments are done at higher density and with particles
that undergo dissipative collisions probably helps to form
denser 2D clusters as opposed to linear chains. Moreover,
in contrast to numerical simulations, the magnetic dipole
moments are probably not uniformly distributed in all the
particles. Although it is really difficult to estimate the width of
the dipole moments’ distribution in our experiment, a fraction
of them could be small enough to prevent binding.

The second point deserving discussion is the existence of
the quasistatic hysteresis loop when the driving amplitude
is slowly modified. A crucial point is that during a cooling
ramp there is a specific driving, �c, which depending on the
particular magnetization history is between 3.5 and 3.9, below
which solid clusters grow. Due to magnetization reduction and
because τ and τo vary with driving amplitude, this specific
boundary is very difficult to determine more precisely. How
slow one should vary the driving depends on the time scales
that are present in the system, that is, on τ and τo. The
quench experiments show that, within the hysteresis loop,
both times grow strongly with driving amplitude. These same
quench experiments show the existence of another particular
acceleration, �s (��c), below which τo ≈ 0. This onset value
seems to be better defined than �c.

Our quasistatic increasing acceleration ramps show that the
heating branch of the loop seems to be a stable, adiabatic
branch. In particular, all quasistatic heating ramps follow the
same curve and the critical driving above which solid clusters
disappear, �l = 4.8 ± 0.1, is very reproducible. The fact that
we are able to follow adiabatically this stable branch can be
understood with the following reasoning.

(1) A ramp starts at low � with a well-formed solid cluster
(or clusters) in coexistence with the liquid phase.

(2) The driving amplitude is increased by a small amount,
which increases the system’s kinetic energy (granular “tem-
perature”).

(3) Particles in the solid phase but at the cluster’s boundary
will receive stronger collisions from those in the liquid phase,
so the probability of getting ripped off increases.

(4) This results in a cluster size reduction, more or less
continuously as the driving is increased further.

(5) Because the change from the one state to another occurs
smoothly, the time it takes can be short.

The fact that �l > �s demonstrates that there is a metastable
region for which the system might stay in a completely
fluidized state, but from which eventually a solid cluster will
nucleate and grow until a stationary size is reached. Also,
quench experiments done for �q = 3.4–3.9 show that the final
cluster size is the same as that obtained for the heating ramp
(N∞/N collapses with Nc/N of the heating quasistatic loop).
This shows that the cooling ramp branch of the quasistatic
loop is not stable, implying that the cooling ramp was probably
not done slowly enough. This is consistent with the fact that
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for a given magnetic interaction strength, the value of �c

depends on the decreasing ramp rate. Because the number
of solid particles has to grow from the background noise level
to the final asymptotic one, waiting times much longer than τo

are necessary. Another possible route for the metastable state
characterization would be to study precursors through density
and velocity correlations.

We now turn to the values of α used to fit experimental data
with a stretched exponential law. At equilibrium, we would
expect the exponent α = D + 1 = 3 [20], where D = 2 is
the spatial dimension, but instead we obtain α ≈ 0.5. Due to
the anisotropy of the attractive force, of the special shape of
the interface, and of the fact that most of the clusters start to
grow from boundaries, one could assume that our experiment
behaves more like a quasi-1D system, but even in this extreme
case, we should obtain D � 1 and α � 2. Moreover, one has
to underline that we are in an out-of-equilibrium dissipative
system. Other aspects can therefore play a role, like dissipation,
which is probably different in the cluster and liquid phase, or
the very particular thermalization imposed by vertical vibra-
tion. This effect could be especially important near the tran-
sition where a critical behavior can be expected. Actually, the
exponent α < 1 is measured in another out-of-equilibrium sys-
tem: the slow compaction of granular packing by tapping [4],
but the meaning of such a law is still under debate in this case.
This issue deserves further study by changing the boundary
shape (from square to circular), by doing the experiment in a
viscous fluid to modify the dissipation, or by exciting the grains
by vibration using colored noise with a broad frequency range.

Up to know we do not have a model to support the stretched
exponential formula (1), which however appears to be a very
convenient fit. At this stage of our understanding, fit parameters
do not give much explanation about the phase separation
physical mechanism. In order to build such a model one would
have to consider the phase transition with a finite number of
particles in a finite volume.

Finally, the combination of different dissipation and exter-
nal driving on each phase leads us to conclude that these will
not have the same efficiency in both phases. The output is

that the “granular” kinetic temperatures can be very different
between the liquid and solid phases, as evident from our
observations. This has an important effect on the intensity
of fluctuations in each phase. For example, in the metastable
region, the transition from the liquid state to the coexisting
one can be achieved within the experimental time scales that
are available. This transition occurs because the appropriate
fluctuation occurs in the liquid state. However, the inverse
transition has not been observed within the experimental
observation times. We conjecture that once a particle is trapped
in this solid state, it becomes very difficult to receive enough
energy to escape. In the limit where one of the phases would be
absolutely free of fluctuations, the system would fall into the
absorbing phase transition category. This is one of the few out-
of-equilibrium phase transitions that has been clearly identified
experimentally, in particular, one realization belonging to
the direct percolation universality class [2]. Therefore, it is
tempting to propose our system as a candidate for the study
of a quasiabsorbing phase transition. Indeed, our results share
similarities with measurements performed between two liquid
crystal turbulent phases [21], in which a hysteresis loop is
observed between a turbulent phase stable at high excitation
(called DSM2) and a quasiabsorbing state (called DSM1)
observed at lower driving [22]. However, the relatively small
size of our system, and our imperfect control on the spheres’
magnetization and therefore on the transition onset, makes very
difficult any quantitative benchmark between our system with
other studies exhibiting out-of-equilibrium quasiabsorbing
phase transitions.
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Lett. 99, 234503 (2007).
[3] O. Pouliquen, M. Nicolas, and P. D. Weidman, Phys. Rev. Lett.

79, 3640 (1997).
[4] G. Lumay and N. Vandewalle, Phys. Rev. Lett. 95, 028002

(2005).
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